Home About us Editorial board Browse Articles Submit article Instructions Subscribe Contacts Login 
  • Users Online: 220
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2017  |  Volume : 8  |  Issue : 1  |  Page : 5

Identification and preliminary validation of radiation response protein(s) in human blood for a high-throughput molecular biodosimetry technology for the future


1 Present Affiliation: Department of Biotechnology, St. Anthony's College, Shillong, Meghalaya, India
2 Present Affiliation: Department of Biotechnology, Central University of Rajasthan, Bandarsindri, Kishangarh, Rajasthan, India
3 Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University, Shillong, Meghalaya, India
4 Post-graduate Intern/Trainee from St. Anthony's College, Shillong, Meghalaya, India

Correspondence Address:
Rajesh N Sharan
Department of Biochemistry, Radiation and Molecular Biology Unit, North Eastern Hill University, Shillong - 793 022, Meghalaya
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2041-9414.198910

Rights and Permissions

The absence of a rapid and high-throughput technology for radiation biodosimetry has been a great obstacle in our full preparedness to cope with large-scale radiological incidents. The existing cytogenetic technologies have limitations, primarily due to their time-consuming methodologies, which include a tissue culture step, and the time required for scoring. This has seriously undermined its application in a mass casualty scenario under radiological emergencies for timely triage and medical interventions. Recent advances in genomics and proteomics in the postgenomic era have opened up new platforms and avenues to discover molecular biomarkers for biodosimetry in the future. Using a genomic-to-proteomic approach, we have identified a basket of twenty “candidate” radiation response genes.(RRGs) using DNA microarray and tools of bioinformatics immediately after ex vivo irradiation of freshly drawn whole blood of consenting and healthy human volunteers. The candidate RRGs have partially been validated using real-time quantitative polymerase chain reaction.(RT-qPCR or qPCR) to identify potential “candidate” RRGs at mRNA level. Two potential RRGs, CDNK1A and ZNF440, have so far been identified as genes with potentials to form radiation response proteins in liquid biopsy of blood, which shall eventually form the basis of fluorescence- or ELISA-based quantitative immunoprobe assay for a high-throughput technology of molecular biodosimetry in the future. More work is continuing.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed6676    
    Printed736    
    Emailed0    
    PDF Downloaded613    
    Comments [Add]    
    Cited by others 6    

Recommend this journal